
Experimental evidence for Maeda’s conjecture on modular
forms

Alexandru Ghitza1, Angus McAndrew1

1 Department of Mathematics and Statistics, University of Melbourne, Parkville, Australia

E-mail: aghitza@alum.mit.edu, mcandrew@student.unimelb.edu.au

Abstract

We describe a computational approach to the verification of Maeda’s conjecture for the Hecke
operator T2 on the space of cusp forms of level one. We provide experimental evidence for
all weights less than 14 000, as well as some applications of these results. The algorithm was
implemented using the mathematical software Sage, and the code and resulting data were made
freely available.
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1 Introduction

Modular forms come in many different types. One of the most attractive aspects of the theory is
that, despite the apparent variety of definitions and properties, there are some universal guiding
principles (such as the Langlands program) that serve to unify and motivate this diversity. On the
other hand, there are some special properties that seem to occur in isolation. One such instance
is provided by a conjecture formulated by Maeda, which indicates a behavior that seems to be
specific1 to modular forms of level one on GL2.

Before describing Maeda’s conjecture in more detail, we review some basic definitions and prop-
erties of modular forms. For a thorough treatment of the background needed in this paper, the
reader is invited to consult [22].

Let k ∈ Z. A modular form of level 1 and weight k is a holomorphic function

f : H −→ C, where H = {z ∈ C | Im z > 0},

satisfying

• Modularity: for all z ∈ H and all g =
(
a b
c d

)
∈ SL2(Z),

f

(
az + b

cz + d

)
= (cz + d)kf(z).

• Holomorphicity at i∞: a holomorphic function f satisfying the modularity condition satisfies
f(z + 1) = f(z) for all z ∈ H, so it has a Fourier expansion

f(z) =

∞∑
n=−∞

anq
n, where we set q = e2πiz.

1We must note that recent work of Tsaknias [25] points to a generalisation of Maeda’s conjecture to forms of
higher level and promises to shed new conceptual light on these questions. We thank Gabor Wiese for bringing
Tsaknias’ preprint to our attention.
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We ask for f to be holomorphic at i∞, i.e. that an = 0 for all n < 0.

We say that a modular form f is a cusp form if a0 = 0. The cusp forms of weight k form a
vector space Sk. These vector spaces are equipped with a family of Hecke operators Tm (for m ∈ N),
whose effect on the Fourier expansion f(q) =

∑
anq

n of f ∈ Sk is given by

(Tmf)(q) =

∞∑
n=1

 ∑
d|gcd(m,n)

dk−1amn/d2

 qn.

The complex vector space Sk has dimension

d =

{[
k
12

]
− 1 if k ≡ 2 (mod 12),[

k
12

]
if k 6≡ 2 (mod 12).

Let F denote the characteristic polynomial of the operator T2 acting on Sk, and let d = dimSk.
In the 1970s, Yoshitaka Maeda noticed that F is irreducible over Q for all k such that d ≤ 12.
In the 1990s, Lee-Hung [17] and Buzzard [5] studied these polynomials further and observed in a
number of cases that the Galois group of F is the symmetric group Sd. Shortly thereafter, Maeda
made the following conjectural statement:

Conjecture 1.1 (Maeda [15]). Let m > 1 and let F be the characteristic polynomial of the Hecke
operator Tm acting on Sk. Then

(1) the polynomial F is irreducible over Q;

(2) the Galois group of the splitting field of F is the full symmetric group Sd, where d is the
dimension of Sk.

The conjecture has enjoyed constant attention over the last 15 years, with theoretical as well as
computational results. We summarize the computational verifications in Table 1.

Source weights
Lee-Hung [17] k ≤ 62, k 6= 60
Buzzard [5] k = 12`, ` prime, 2 ≤ ` ≤ 19
Maeda [15] k ≤ 468
Conrey-Farmer [6] k ≤ 500, k ≡ 0 (mod 4)
Farmer-James [11] k ≤ 2 000
Buzzard-Stein, Kleinerman [16] k ≤ 3 000
Chu-Wee Lim [18] k ≤ 6 000
present paper k ≤ 14 000

Table 1. Summary of known cases of Maeda’s conjecture for T2

The theoretical results focus on whether the validity of the conjecture for a given operator Tm
can be used to deduce the conjecture for other operators Tn. We state three such results, each
giving a partial answer to this question.
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Theorem 1.2 (Conrey-Farmer-Wallace [7]). Let k be a positive even integer. Suppose there exists
n ≥ 2 such that the operator Tn acting on Sk satisfies Maeda’s conjecture. Then so does Tp acting
on Sk, for every prime p in the set of density 5/6 defined by the conditions

p 6≡ ±1 (mod 5) or p 6≡ ±1 (mod 7).

Stated differently, this says that if Maeda’s conjecture in weight k holds for one index n, then
the density of primes for which the conjecture fails is at most 1/6. The next result considers only
the irreducibility part of the conjecture, but it is stronger since it says that the density of primes
for which the conjecture fails is zero.

Theorem 1.3 (Baba-Murty [2]). Let k be a positive even integer. Suppose there exists a prime p
such that the characteristic polynomial of Tp acting on Sk is irreducible over Q. Then there exists
δ > 0 such that

#{` ≤ N prime | charpoly(T`|Sk) is reducible} � N

(logN)1+δ
.

Finally, Ahlgren gave a simple criterion for extending the validity of Maeda’s conjecture from
one index to another, and used it together with some computer work to prove the following result.

Theorem 1.4 (Ahlgren [1]). Let k be such that d := dimSk ≥ 2. Suppose there exists n ≥ 2 such
that the operator Tn acting on Sk satisfies Maeda’s conjecture. Then

(1) Tp acting on Sk satisfies Maeda’s conjecture for all primes p ≤ 4 000 000;

(2) Tn acting on Sk satisfies Maeda’s conjecture for all n ≤ 10 000.

We can now state our main result.

Theorem 1.5. Let k ≤ 14 000 and let

n ∈{2, . . . , 10 000} ∪ {p prime | 2 ≤ p ≤ 4 000 000}
∪ {p prime | p 6≡ ±1 (mod 5)} ∪ {p prime | p 6≡ ±1 (mod 7)}.

Let F be the characteristic polynomial of the Hecke operator Tn acting on the space Sk of cusp
forms of weight k and level 1. Then F is irreducible over Q and the Galois group of its splitting
field is the full symmetric group Sd, where d is the dimension of the space Sk.

Proof. The statement for T2 is the result of the computations described below. Given this, we
deduce the result for the other Tn by applying the results of Conrey-Farmer-Wallace and Ahlgren,
as stated above. q.e.d.

Our computational approach follows the “multimodular” method introduced by Buzzard in [5]
and refined by Conrey-Farmer in [6]. The main improvement is the use of random primes of
moderate size, instead of going through primes consecutively until suitable ones are found. In
Section 3 we describe the theoretical foundation of this approach, and we estimate the densities
of the different types of primes we are looking for. This provides us with expected running times
for our randomized algorithm, the Sage implementation of which we discuss in detail in Section 4.
Finally, Section 5 gives some direct corollaries of Theorem 1.5 to some questions about modular
forms of level one.

We have made the code and data used to verify Theorem 1.5 available at
http://bitbucket.org/aghitza/maeda_data

http://bitbucket.org/aghitza/maeda_data
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2 Polynomial factorization and Frobenius elements

Our algorithm is based on a correspondence between the factorization of polynomials over finite
fields and the cycle decomposition of Frobenius elements in Galois groups. We give a short review
of these results, which go back all the way to the beginnings of algebraic number theory, appearing
for instance in the work of Frobenius. A fascinating exposition of the mathematics and history of
these ideas is given by Stevenhagen and Lenstra in [24].

We start with a bit of terminology. If τ is a permutation on d letters, it can be decomposed
into a product of disjoint cycles, uniquely up to permutation of the cycles. We say that τ has cycle
pattern dm1

1 dm2
2 . . . dmt

t if its decomposition contains exactly mj cycles of length dj , for j = 1, . . . , t.
(Note: m1d1+m2d2+. . .+mtdt = d.) If H is a polynomial in Fp[X], we say that H has factorization
pattern dm1

1 dm2
2 . . . dmt

t if H has exactly mj irreducible factors of degree dj over Fp. We recall that
H is said to be separable if it has distinct roots over Fp.

Lemma 2.1. Let F ∈ Z[X] be monic, let p be a prime and let Fp ∈ Fp[X] be the reduction of F
modulo p. If Fp is separable, then there exists an element τ of the Galois group of F such that the
cycle pattern of τ is the same as the factorization pattern of Fp.

We sketch a proof of this classical result.
Fix a prime p and consider the field automorphism σ : Fp −→ Fp given by σ(a) = ap. Since σ

fixes the subfield Fp, it permutes the roots of any polynomial H ∈ Fp[X]. Moreover, Galois theory
tells us that the cycle pattern of σ (viewed as a permutation) is the same as the factorization
pattern of H over Fp.

We now take a monic polynomial F ∈ Z[X] and we let K/Q be its splitting field, OK the ring
of integers of K, and G the Galois group of K/Q. Let p be a prime in OK over p. Suppose the
reduction Fp of F modulo p is a separable polynomial (in this case, we say that p is unramified in
K/Q). Then there is a Frobenius element Frobp ∈ G determined uniquely by the property

Frobp(α) ≡ σ(α) (mod p) for all α ∈ OK .

This implies that Frobp permutes the roots α1, . . . , αd ∈ OK of F in the exact same way as σ
permutes the roots in Fp of Fp. We conclude that the cycle pattern of Frobp is the same as the
factorization pattern of Fp over Fp. Therefore we can take τ in the conclusion of Lemma 2.1 to be
Frobp.

Note that τ is not uniquely determined by F and p, as the choice of a prime p of OK above p
matters. However, any two such τ are conjugate in the Galois group.

The following result follows easily from Lemma 2.1 and the fact that for any F ∈ Z[X] there
are only finitely many primes p (namely the ones dividing the discriminant of F ) for which Fp is
not separable.
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Theorem 2.2 (Frobenius). Let F ∈ Z[X] be monic, let K/Q be the splitting field of F and let G
be the Galois group of K/Q. Let degF = m1d1 + . . .+mtdt be a partition of degF . The density
of primes p for which Fp has factorization pattern dm1

1 . . . dmt
t is equal to

#{σ ∈ G | the cycle pattern of σ is dm1
1 . . . dmt

t }
#G

.

3 The basic lemma and density estimates

Consider a monic polynomial F ∈ Z[X] of degree d. Given a prime p, we denote by Fp ∈ Fp[X] the
reduction modulo p of F . We say that the prime p is

(1) of type I if Fp is irreducible over Fp;

(2) of type II if Fp factors over Fp into a product of distinct irreducible factors

Fp = f0f1 · · · fs

with

deg f0 = 2

deg fj odd for j = 1, . . . , s;

(3) of type III if Fp factors over Fp into a product of distinct irreducible factors

Fp = f0f1 · · · fs

with deg f0 > d/2 and prime.

Remark 3.1. Hida and Maeda use a similar approach in Section 5 of [15], but replace primes of
type III with primes of type IV, i.e. p such that Fp = f0f1 with f0, f1 distinct and irreducible, and
deg f0 = 1. We will see below that primes of type III are significantly more common (and therefore
better suited for our algorithm) than those of type IV.

Remark 3.2. These types are not necessarily mutually exclusive: if d itself is prime, then a prime
p of type I is clearly also of type III.

Remark 3.3. In either of the three types, the conditions imply that the reduced polynomial Fp is
separable:

• If p is a prime of type I, then Fp is irreducible, hence separable.

• If p is a prime of type II or III, Fp is a product of distinct irreducible factors. Each of the
factors is then separable, and they cannot have any common roots, since otherwise they would
have a nonconstant common factor and would therefore be reducible. Hence Fp has distinct
roots.

Our computational approach to Maeda’s conjecture is based on the following result, first proved
in a special case in [5] and then generalized in [6].
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Lemma 3.4 (Buzzard, Conrey-Farmer). Let F ∈ Z[X] be a monic polynomial of degree d. Suppose
that F has primes of respective types I, II and III. Then F is irreducible over Q and its splitting
field over Q has full Galois group Sd.

Proof. The fact that F is irreducible is immediate from the existence of a prime of type I.
Let K/Q be the splitting field of F and let G be the Galois group of K/Q. Since F is irreducible,

G is a transitive subgroup of Sd.
We also have a prime of type II. By Lemma 2.1, there exists τ1 ∈ G whose decomposition into

disjoint cycles contains exactly one even cycle (of length 2). Let a be the least common multiple of
the lengths of the other cycles in τ1, then τa1 ∈ G is a transposition.

Finally, there is a prime of type III. By Lemma 2.1, there exists τ2 ∈ G whose decomposition
into disjoint cycles contains one cycle of prime length p > d/2. Therefore the other cycles have
lengths that are coprime to p; letting b denote the least common multiple of these lengths, we find
that τ b2 ∈ G is a p-cycle.

We now use the existence of these elements of G to conclude that G = Sd. For i, j ∈ S =
{1, . . . , d}, write i ∼ j if i = j or if the transposition (i j) is in G. This is an equivalence relation on
S. Since G is transitive, each equivalence class has the same number n of elements and it follows
that n | d = #S. Note that n > 1 since G contains at least one transposition, namely τa1 . Let T be
the subset of S permuted by τ b2 , and let GT be the subgroup of G fixing S\T . Define an equivalence
relation on T by i ' j if i = j or if the transposition (i j) ∈ GT . As before, each equivalence class
has the same number m of elements and m | p = #T . Since n > 1, we have m > 1, so m = p since
p is prime. But n ≥ m because GT ⊂ G. Thus n > d/2, so n = d. This implies G = Sd. q.e.d.

Our algorithm will consist of picking random primes and checking whether they are of type I, II
or III for the characteristic polynomial of the Hecke operator T2. According to Theorem 2.2, it is
therefore important to estimate the number of permutations having certain types of cycle patterns.
For a fixed pattern, the following well-known result (see, for instance, Proposition 1.3.2 of [21])
gives an exact expression for the number of permutations.

Lemma 3.5. Let an element σ of Sd have cycle pattern dm1
1 dm2

2 . . . dmt
t , where mi is the number

of times a cycle of length di appears in the cycle decomposition of σ. The number of elements of
Sd of cycle pattern dm1

1 dm2
2 . . . dmt

t is equal to

C(dm1
1 dm2

2 . . . dmt
t ) =

d!∏t
j=1

(
d
mj

j mj !
) .

Proposition 3.6. The density of primes of type I is

DI(d) =
1

d
.

Proof. Primes of type I correspond to d-cycles in Sd. Each such cycle can be written uniquely as a
sequence 1, a1, . . . , ad−1, where a1, . . . , ad−1 ∈ {2, . . . , d} can appear in any order. Therefore there
are (d− 1)! d-cycles, and by Theorem 2.2, the density of primes of type I is

(d− 1)!

d!
=

1

d
.

q.e.d.
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In order to state our result on primes of type II, recall that for n ∈ Z>0 odd, the double factorial
n!! of n is the product of all the odd positive integers less than or equal to n.

Proposition 3.7. Let d > 2 and let d̃ be the largest even integer such that d̃ ≤ d. The density of
primes of type II is given by

DII(d) =
[(d̃− 3)!!]2

2(d̃− 2)!

and satisfies the inequality

DII(d) >
1

4
√
d
.

Proof. Primes of type II correspond to elements in Sd containing a 2-cycle and no other even cycles.
There are

(
d
2

)
2-cycles in Sd; fixing a 2-cycle, we need the number O(d − 2) of elements of odd

order in Sd−2. We have

DII(d) =
1

d!

(
d

2

)
O(d− 2) =

O(d− 2)

2(d− 2)!
.

The sequence (O(n) | n ∈ N) appears in nature in several guises, see [10]. The recurrence formulas
that appear there and in Chapter IV of [19] easily give the exact expression

O(n) =

{
(n− 1)!!, if n is even

(n− 2)!!n, if n is odd,

which immediately provides us with the exact expression for DII(d) in the statement.
It remains to establish the lower bound. Write d̃ = 2c for some c ∈ Z (recall that d̃ is the largest

even integer less than or equal to d). Then

O(d− 2) =
[(2c− 3)!!]2

2(2c− 2)!
=

(2c− 3)!

22c−3(2c− 2)[(c− 2)!]2
. (1.1)

We use the following bounds on the factorial, which can be thought of as an effective version of
Stirling’s approximation and were obtained by Robbins (see [20] and Section II.9 in [12]):

√
2πnn+

1
2 e−n+

1
12n+1 < n! <

√
2πnn+

1
2 e−n+

1
12n .

Then by using the lower bound for the numerator and the upper bound for the denominator on the
right hand side of Equation (1.1), we obtain

DII(d) >
2c− 3

2c− 2

1

2
√
π(c− 2)

e
1

24(c−2)+1
− 1

6(c−2) >

(
9

10

)2 √
2√
π

1√
d
,

where we use the elementary inequalities (valid for c > 6):

e
1

24(c−2)+1
− 1

6(c−2) > e−
5

24c >
9

10
,

2c− 3

2c− 2
≥ 9

10
.
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Since (
9

10

)2 √
2√
π
>

1

4
,

this gives us the desired lower bound for d > 12, and the remaining cases 2 < d ≤ 12 are easily
checked. q.e.d.

Proposition 3.8. The density of primes of type III is

DIII(d) =
∑

d/2<`≤d, ` prime

1

`
.

If d > 2, then

DIII(d) >
1

d
.

Proof. Fix a prime ` such that d/2 < ` ≤ d. According to Theorem 2.2, we need to count the
number of elements of Sd that contain an `-cycle. Choosing the `-cycle itself involves the

(
d
`

)
ways

of picking its constituents, which can then be rearranged within the cycle in (`−1)! ways. It remains
to take into account the number of permutations of the remaining d− ` symbols, so overall we have(

d

`

)
(`− 1)!(d− `)! =

d!

`

elements of Sd containing an `-cycle, which gives the stated density.
The inequality given in the statement follows from Bertrand’s postulate (proved by Chebyshev),

which says that for any integer n > 1 there is at least one prime ` such that n < ` < 2n. q.e.d.

We can get a much better lower bound on the density DIII by using some recent results of
Dusart on explicit estimates for sums over primes.

Theorem 3.9 (Dusart, Theorem 6.10 in [9]). Let B ≈ 0.26149 denote the Meissel-Mertens con-
stant. For all x > 1 we have

log log x+B −
(

1

10 log2 x
+

4

15 log3 x

)
≤
∑
p≤x

1

p
. (1.2)

We will also need an upper bound on the sum of the reciprocals of primes up to x, but Dusart’s
upper bound only holds for x ≥ 10 372. For our purposes, the following weaker result is sufficient:
for all x > 1 we have ∑

p≤x

1

p
≤ log log x+B +

1

log2 x
. (1.3)

(This inequality can be found in Theorem 8.8.5 of [3].)

Proposition 3.10. If d > 10, then

DIII(d) >
1

3 log d
.
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Proof. We put together inequalities (1.2) and (1.3) to get

DIII(d) > log log d− log log
d

2
− 1

10 log2 d
− 4

15 log3 d
− 1

log2 d
2

.

We write

log log d− log log
d

2
= log

(
1 +

log 2

log d− log 2

)
and use the inequality

log(1 + x) ≥ x− x2

2
+
x3

3
− x4

4
for all 1 < x ≤ 1

to get that for all d ≥ 4

DIII(d) >
1

log d− log 2

[
log 2−

(
log2 2

2
+

11

10

)
1

log d− log 2

−
(

4

15
− log3 2

3

)
1

(log d− log 2)2
− log4 2

4

1

(log d− log 2)3

]
>

1

log d

[
0.693− 1.341

1

log d− log 2
− 0.156

1

(log d− log 2)2

− 0.058
1

(log d− log 2)3

]
.

If d > 94, then the expression in the brackets is bigger than 1/3, and we get the desired inequality.
We check that it holds for the remaining cases 10 < d ≤ 94 by computation. q.e.d.

For completeness, we treat the case of primes of type IV, as defined in Remark 3.1.

Proposition 3.11. Let d > 1. The density of primes of type IV is

DIV (d) =
1

d− 1
.

Proof. We need to count the number of (d− 1)-cycles in Sd. There are d choices for the letter that
is fixed, and (d− 2)! choices for permuting the other letters appropriately, therefore the density of
primes of type IV is

d(d− 2)!

d!
=

1

d− 1
.

q.e.d.

4 Implementation and results

Our approach is a randomized version of the algorithm from [6], based on the results introduced
in the previous section. We implemented this algorithm using the mathematical software Sage,
see [23].

Here is a description of the main steps used to verify Maeda’s conjecture for a fixed weight k;
in those cases where a major step is delegated to a component of Sage (rather than using native
Sage code), we mention the relevant component.
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(1) Compute the Victor Miller basis B for Sk up to precision 2(d+2), where d is the dimension of
Sk. The Sage implementation of this basis uses [14] polynomials as the internal data structure.

(2) Compute the matrix M of the Hecke operator T2 with respect to the basis B – this is very
efficient since the basis B is echelonized.

(3) Pick a random prime p < 220, uniformly over this range. (This choice of upper bound gives
a large enough range so that it is likely to contain primes of type we are looking for, but not
so large that the arithmetic over Fp gets too expensive.)

(4) Reduce M modulo p and compute the characteristic polynomial Fp ∈ Fp[X]. The character-
istic polynomial is computed by the [8] library.

(5) Is Fp irreducible? If so, p is a prime of type I. The irreducibility test uses [14].

(6) Factor Fp over Fp and use this factorization to decide whether p is a prime of type II or III.
The factorization is done by [14].

(7) Repeat from step (3) until we have found at least one prime of each type.

According to Propositions 3.6, 3.7 and 3.10, we expect to look on average at d primes before we
find one of type I, at 4

√
d primes to find one of type II, and at 3 log d primes to find one of type

III.
The actual performance of this algorithm (as well as a comparison to the consecutive version of

the algorithm, used in [6]) is illustrated in Figure 1. Some care needs to be taken in interpreting
the graphs:

• There is no difference in running times for Steps (1) and (2), which are common between the
two algorithms.

• As the weight increases, the major component of the running time is finding a prime of type
I. Therefore, even though the randomized algorithm does much better at finding primes of
types II and III, this advantage has only a minor impact on the overall running time.

• In the range illustrated in the graphs (i.e. weights less than 2 000), the randomized algorithm
required on average one third of the number of primes needed by the consecutive algorithm.
However, some of this is counteracted by the fact that the consecutive algorithm works with
much smaller primes, which are faster to test.

• Overall, for weights less than 2 000, the randomized algorithm was about twice as fast as the
consecutive one.

It would be very interesting to understand why small primes are ill-suited for the purposes of this
multimodular algorithm. We can only offer a heuristic reason: we observed that the discriminant
of the Hecke operator T2 tends to be highly divisible by a lot of small primes; this means that
the characteristic polynomial of T2 is not squarefree at these primes, which disqualifies them from
being primes of types I, II or III.

For weight k = 14 000, the entire verification took about 14 hours. The majority (59%) of
the time was spent looking for a prime of type I; this required testing 655 primes, and each test
took about 47 seconds. The computation of the Victor Miller basis took about 4.9 hours, and the
computation of the characteristic polynomial of T2 took about 1 hour.
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consec random
min 1.85 0.01
max 10.00 6.50
med 2.93 0.69
mean 3.21 0.96

0 2 4 6 8 10

0

50

100

150

200
random
consec

consec random
min 0.93 0.03
max 15.15 7.65
med 6.64 0.70
mean 6.47 0.99

0 5 10 15

0

100

200 random
consec

consec random
min 4.00 0.12
max 40.46 8.47
med 23.03 0.68
mean 22.13 0.94

0 10 20 30 40

0

100

200
random
consec

Figure 1. Histograms illustrating the number of primes tested before finding a prime of type I,
II, respectively III, in weights up to 2 000. In each graph, the numbers on the x-axis represent
the ratio N/E of the actual number of primes tested over the expected number of primes (coming
from the densities described in Section 3). The y-value represents the number of weights featuring
(a small neighborhood of) that particular ratio N/E. The blue continuous line corresponds to
our randomized algorithm, while the red dotted line corresponds to the consecutive algorithm
from [6]. As an example: in the top graph, the global maximum on the continuous line is at
(0.1, 182), meaning that for 182 weights, the number of candidates for a prime of type I tested in
the randomized algorithm was about 1/10 of the expected number of primes.
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5 Some applications

We record some immediate consequences of Theorem 1.5.

5.1 Non-vanishing of L-functions

A modular form is called an eigenform if it is an eigenvector for all the Hecke operators Tn. The
L-function associated to an eigenform f =

∑∞
n=1 anq

n of weight k is given by

L(f, s) =
∞∑
n=1

an
ns
.

If k ≡ 2 (mod 4), the functional equation of L implies that L(f, k/2) = 0. It is believed that
if k ≡ 0 (mod 4), then L(f, k/2) 6= 0. The following result follows immediately from work of
Conrey-Farmer:

Corollary 5.1 (see Theorem 1 in [6]). Suppose k ≡ 0 (mod 4) and k ≤ 14 000. Then L(f, k/2) 6= 0
for any cuspidal eigenform f of level 1 and weight k.

5.2 Base change for totally real fields

It is in the context of this work of Hida and Maeda that Maeda’s conjecture was formulated. We
content ourselves with giving a general description of this application, and we refer the interested
reader to [15] for details.

Let f ∈ Sk be a Hecke eigenform. For each prime p, there is a p-adic Galois representation

ρ : Gal
(
Q/Q

)
−→ GL2

(
Qp
)
.

There is an Artin L-function L(ρ, s) attached to ρ, and the relation between ρ and f can be
summarized by

L(ρ, s) = L(f, s).

Now let E be a number field. There is a purely algebraic notion of a cohomological eigenform
f̂ on GL2(AE), where AE is the ring of adeles of E. We say that f̂ is a base change of f to E if

L(f̂ , s) = L(ρE , s),

where ρE : Gal(Q/E) −→ GL2(Qp) is the restriction of ρ to E.
The work of Hida and Maeda, together with Theorem 1.5, implies that for k ≤ 14 000 and a

totally real field E satisfying some ramification conditions, any eigenform f ∈ Sk has a base change
to E.

5.3 Eigenforms divisible by eigenforms

It is easy to see from the definition of a modular form that if f1 and f2 are modular forms of
respective weights k1 and k2, then the product f1f2 is a modular form of weight k1 + k2. In other
words, modular forms of all weights put together form a graded algebra

M =
⊕
k∈Z

Mk.
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A natural question is whether the product of eigenforms can be an eigenform. This will clearly
happen for small weights (for instance, when the product lives in a one-dimensional space of cusp
forms). Since the Hecke operators do not act on the entire algebra M of modular forms (they act
differently on the graded pieces Mk), it seems reasonable that the one-dimensional coincidences
are the only situation in which a product of eigenforms is an eigenform. Such questions have
been studied by several authors, with the latest results appearing in a recent paper by Beyerl-
James-Xue [4]. They consider the more general question of divisibility of an eigenform by another
eigenform, i.e. relations of the form h = fg where f, g, h are modular forms and f, h are eigenforms.
The relation with Maeda’s conjecture is discussed in Section 6 of [4], and Theorem 1.5 implies the
following result.

Corollary 5.2. Let h be a cuspidal eigenform of weight ≤ 14 000, and let f be an eigenform (which
could be cuspidal or Eisenstein). Then h = fg for some modular form g ∈ Mk with k > 2 if and
only if we are in one of the cases listed in Table 2.

weight of f weight of g modulo 12 nature of f
4 0, 4, 6, 10 Eisenstein
6 0, 4, 8 Eisenstein
8 0, 6 Eisenstein

10 0, 4 Eisenstein
12 0, 2, 4, 6, 8, 10 cuspidal
14 0 Eisenstein
16 0, 4, 6, 10 cuspidal
18 0, 4, 8 cuspidal
20 0, 6 cuspidal
22 0, 4 cuspidal
26 0 cuspidal

Table 2. The only cases in which a cuspidal eigenform of weight ≤ 14 000 can be factored into
h = fg with f an eigenform, see Corollary 5.2.

5.4 Distinguishing Hecke eigenforms

How many initial Fourier coefficients are necessary to completely determine a Hecke eigenform?
Theorem 1 in [13] says that a2, a3 and a4 are sufficient, but our computational verification of
Maeda’s conjecture gives a stronger result2:

Corollary 5.3 (see Theorem 6 in [13]). Let f and g be cuspidal eigenforms of level 1 and (possibly
distinct) weights ≤ 10 000. Then a2(f) = a2(g) if and only if f = g.

2Corollary 5.3 relies on Theorem 1.5, which holds for k ≤ 14 000, but also needs another computation from [13],
which has only been done for weights up to 10 000.
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